Published in

Oxford University Press (OUP), Monthly Notices of the Royal Astronomical Society, 2(494), p. 3053-3059, 2020

DOI: 10.1093/mnras/staa964

Links

Tools

Export citation

Search in Google Scholar

Dynamical friction-driven orbital circularization in rotating discs: a semi-analytical description

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT We present and validate a novel semi-analytical approach to study the effect of dynamical friction (DF) on the orbits of massive perturbers in rotating stellar discs. We find that DF efficiently circularizes the orbit of co-rotating perturbers, while it constantly increases the eccentricity of counter-rotating ones until their angular momenta reverse, then once again promoting circularization. Such ‘drag toward circular co-rotation’ could shape the distribution of orientations of kinematically decoupled cores in disc galaxies, naturally leading to the observed larger fraction of co-rotating cores.

Beta version