Published in

Oxford University Press (OUP), Publications of Astronomical Society of Japan, Supplement_1(71), 2019

DOI: 10.1093/pasj/psz065

Links

Tools

Export citation

Search in Google Scholar

Nobeyama 45 m mapping observations toward Orion A. II. Classification of cloud structures and variation of the 13CO/C18O abundance ratio due to far-UV radiation

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract We present results of the classification of cloud structures toward the Orion A Giant Molecular Cloud based on wide-field 12CO (J = 1–0), 13CO (J = 1–0), and C18O (J = 1–0) observations using the Nobeyama 45 m radio telescope. We identified 78 clouds toward Orion A by applying Spectral Clustering for Interstellar Molecular Emission Segmentation (SCIMES) to the data cube of the column density of 13CO. Well-known subregions such as OMC-1, OMC-2/3, OMC-4, OMC-5, NGC 1977, L1641-N, and the dark lane south filament (DLSF) are naturally identified as distinct structures in Orion A. These clouds can also be classified into three groups: the integral-shaped filament, the southern regions of Orion A, and the other filamentary structures in the outer parts of Orion A and the DLSF. These groups show differences in scaling relations between the physical properties of the clouds. We derived the abundance ratio between 13CO and C18O, $X_{^{13}\mathrm{CO}}/X_{\mathrm{C}^{18}\mathrm{O}}$, which ranges from 5.6 to 17.4 on median over the individual clouds. The significant variation of $X_{^{13}\mathrm{CO}}/X_{\mathrm{C}^{18}\mathrm{O}}$ is also seen within a cloud in both the spatial and velocity directions and the ratio tends to be high at the edge of the cloud. The values of $X_{^{13}\mathrm{CO}}/X_{\mathrm{C}^{18}\mathrm{O}}$ decrease from 17 to 10 with the median of the column densities of the clouds at the column density of $N_{\mathrm{C^{18}O}} \gtrsim 1 \times 10^{15}\:$cm−2 or visual extinction of AV ≳ 3 mag under the strong far-ultraviolet (FUV) environment of G0 > 103, whereas it is almost independent of the column density in the weak FUV radiation field. These results are explained if the selective photodissociation of C18O is enhanced under a strong FUV environment and it is suppressed in the dense part of the clouds.

Beta version