Published in

Cambridge University Press (CUP), Proceedings of the International Astronomical Union, S345(14), p. 96-101, 2018

DOI: 10.1017/s1743921319002278

Links

Tools

Export citation

Search in Google Scholar

Formation and Evolution of Protoplanetary Disks: Observations and Modeling of Jets, Disks, and Disk Substructures

Journal article published in 2018 by Laura M. Pérez ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractPlanet formation takes place in the gaseous and dusty disks that surround young stars, known as protoplanetary disks. With the advent of sensitive observations and together with developments in theory, our field is making rapid progress in understanding how the evolution of protoplanetary disks takes place, from its inception to the end result of a fully-formed planetary system. In this review, I discuss how observations that trace both the dust and gas components of these systems inform us about their evolution, mass budget, and chemistry. Particularly, the process of disk evolution and planet formation will leave an imprint on the distribution of solid particles at different locations in a protoplanetary disk, and I focus on recent observational results at high angular resolution in the sub-millimeter regime, which have revealed a variety of substructures present in these objects.

Beta version