Published in

Astronomy & Astrophysics, (618), p. L1, 2018

DOI: 10.1051/0004-6361/201833719

Links

Tools

Export citation

Search in Google Scholar

Radial and vertical dust transport inhibit refractory carbon depletion in protoplanetary disks

Journal article published in 2018 by L. Klarmann, C. W. Ormel, C. Dominik ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Context. The Earth is strongly depleted in carbon compared to the dust in the ISM, implying efficient removal of refractory carbon before parent body formation. It has been argued that grains get rid of their carbon through oxidation and photolysis in the exposed upper disk layers. Aims. We assess the efficacy of these C-removal mechanisms, while accounting for the vertical and radial transport of grains. Methods. We obtained the carbon and carbon free mass budget of solids by solving two 1D advection-diffusion equations, accounting for the dust grain size distribution and radial transport. The carbon removal acts on the fraction of the grains that are in the exposed layer and requires efficient vertical transport. Results. In models without radial transport, oxidation and photolysis can destroy most of the refractory carbon in terrestrial planet formation region. But it only reaches the observed depletion levels for extreme parameter combinations and requires that parent body formation was delayed by 1 Myr. Adding radial transport of solids prevents the depletion entirely, leaving refractory carbon equally distributed throughout the disk. Conclusions. It is unlikely that the observed carbon depletion can ultimately be attributed to mechanisms operating on small grains in the disk surface layers. Other mechanisms of removing carbon quickly and deeply must be studied, for example flash heating events or FU Ori outbursts. However, a sustained drift barrier or strongly reduced radial grain mobility is necessary to prevent replenishment of carbon from the outer disk.

Beta version