Published in

NRC Research Press, Canadian Journal of Physics, 9(95), p. 855-857, 2017

DOI: 10.1139/cjp-2016-0877

Links

Tools

Export citation

Search in Google Scholar

Comparison of errors between a differential and a classical abundance analysis

Journal article published in 2017 by Henrique Reggiani, Jorge Meléndez ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The differential abundance analysis method can improve the precision of stellar chemical abundances. The method compares the equivalent widths of a certain line in a star with the same line in a star considered to be a standard representative of its class, using high resolution and high signal to noise ratio spectra. The method has achieved great results by reducing the measurement errors to unprecedentedly low levels. However, to date, there has not been a consistent analysis on the actual improvements of this method when compared to a classical analysis in metal-poor stars. Here we present a comparison between the errors of a classical stellar analysis and a differential analysis among low-metallicity stars.

Beta version