Published in

Astronomy & Astrophysics, (616), p. L17, 2018

DOI: 10.1051/0004-6361/201833205

Links

Tools

Export citation

Search in Google Scholar

XMM-Newton detection of the 2.1 ms coherent pulsations from IGR J17379–3747

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We report the detection of X-ray pulsations at 2.1 ms from the known X-ray burster IGR J17379–3747 using XMM-Newton. The coherent signal shows a clear Doppler modulation from which we estimate an orbital period of ~1.9 h and a projected semi-major axis of ~8 lt-ms. Taking into account the lack of eclipses (inclination angle of <75°) and assuming a neutron star mass of 1.4 M, we have estimated a minimum companion star of ~0.06 M. Considerations on the probability distribution of the binary inclination angle make the hypothesis of a main-sequence companion star less likely. On the other hand, the close correspondence with the orbital parameters of the accreting millisecond pulsar SAX J1808.4–3658 suggests the presence of a bloated brown dwarf. The energy spectrum of the source is well described by a soft disk black-body component (kT ~ 0.45 keV) plus a Comptonisation spectrum with photon index ~1.9. No sign of emission lines or reflection components are significantly detected. Finally, combining the source ephemerides estimated from the observed outbursts, we obtained a first constraint on the long-term orbital evolution of the order of Ṗorb = (−2.5 ± 2.3) × 10−12 s s−1.

Beta version