Published in

Astronomy & Astrophysics, (630), p. A138, 2019

DOI: 10.1051/0004-6361/201833982

Links

Tools

Export citation

Search in Google Scholar

Broadband spectral analysis of MXB 1659−298 in its soft and hard state

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Context. The X-ray transient eclipsing source MXB 1659−298 went into outburst in 1999 and 2015. During these two outbursts the source was observed by XMM-Newton, NuSTAR, and Swift/XRT. Aims. Using these observations, we studied the broadband spectrum of the source to constrain the continuum components and to verify whether it had a reflection component, as is observed in other X-ray eclipsing transient sources. Methods. We combined the available spectra to study the soft and hard state of the source in the 0.45–55 keV energy range. Results. We report a reflection component in the soft and hard state. The direct emission in the soft state can be modeled with a thermal component originating from the inner accretion disk plus a Comptonized component associated with an optically thick corona surrounding the neutron star. On the other hand, the direct emission in the hard state is described only by a Comptonized component with a temperature higher than 130 keV; this component is associated with an optically thin corona. We observed narrow absorption lines from highly ionized ions of oxygen, neon, and iron in the soft spectral state. We investigated where the narrow absorption lines form in the ionized absorber. The equivalent hydrogen column density associated with the absorber is close to 6 × 1023 cm−2 and 1.3 × 1023 cm−2 in the soft and hard state, respectively.

Beta version