Published in

Astronomy & Astrophysics, (616), p. A107, 2018

DOI: 10.1051/0004-6361/201732330

Links

Tools

Export citation

Search in Google Scholar

New detections of (sub)millimeter hydrogen radio recombination lines towards high-mass star-forming clumps

Journal article published in 2018 by W.-J. Kim, J. S. Urquhart ORCID, F. Wyrowski, K. M. Menten, T. Csengeri
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Aims. Previous radio recombination line (RRL) observations of dust clumps identified in the APEX Telescope Large Area Survey of the Galaxy (ATLASGAL) have led to the detection of a large number of RRLs in the 3 mm range. Here, we aim to study their excitation with shorter wavelength (sub)millimeter radio recombination line (submm-RRL) observations. Methods. We made observations of submm-RRLs with low principal quantum numbers (n ≤ 30) using the APEX 12 m telescope, toward 104 H II regions associated with massive dust clumps from ATLASGAL. The observations covered the H25α, H28α, and H35β transitions. Toward a small subsample the H26α, H27α, H29α, and H30α lines were observed to avoid contamination by molecular lines at adjacent frequencies. Results. We have detected submm-RRLs (signal-to-noise (S∕N)≥ 3 σ) from compact H II regions embedded within 93 clumps. The submm-RRLs are approximately a factor of two brighter than the mm-RRLs and consistent with optically thin emission in local thermodynamic equilibrium (LTE). The average ratio (0.31) of the measured H35β/H28α fluxes is close to the LTE value of 0.28. No indication of RRL maser emission has been found. The Lyman photon flux, bolometric, and submm-RRL luminosities toward the submm-RRL detected sources present significant correlations. The trends of dust temperature and the ratio of bolometric luminosity to clump mass, Lbol ∕Mclump, indicate that the H II regions are related to the most massive and luminous clumps. By estimating the production rate of ionizing photons, Q, from the submm-RRL flux, we find that the Q(H28α) measurements provide estimates of the Lyman continuum photon flux consistent with those determined from 5 GHz radio continuum emission. Six RRL sources show line profiles that are a combination of a narrow and a broad Gaussian feature. The broad features are likely associated with high-velocity ionized flows. Conclusions. We have detected submm-RRLs toward 93 ATLASGAL clumps. Six RRL sources have high-velocity RRL components likely driven by high-velocity ionized flows. Their observed properties are consistent with thermal emission that correlates well with the Lyman continuum flux of the H II regions. The sample of H II regions with mm/submm-RRL detections probes, in our Galaxy, luminous clumps (Lbol > 104 L) with high Lbol∕Mclump. We also provide suitable candidates for further studies of the morphology and kinematics of embedded, compact H II regions with the Atacama Large Millimeter/submillimeter Array (ALMA).

Beta version