Published in

Astronomy & Astrophysics, (625), p. L13, 2019

DOI: 10.1051/0004-6361/201935552

Links

Tools

Export citation

Search in Google Scholar

Transiting exocomets detected in broadband light by TESS in the β Pictoris system

Journal article published in 2019 by S. Zieba, K. Zwintz ORCID, M. A. Kenworthy ORCID, G. M. Kennedy ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Aims. We search for signs of falling evaporating bodies (FEBs, also known as exocomets) in photometric time series obtained for β Pictoris after fitting and removing its δ Scuti-type pulsation frequencies. Methods. Using photometric data obtained by the TESS satellite we determined the pulsational properties of the exoplanet host star β Pictoris through frequency analysis. We then pre-whitened the 54 identified δ Scuti p-modes and investigated the residual photometric time series for the presence of FEBs. Results. We identify three distinct dipping events in the light curve of β Pictoris over a 105-day period. These dips have depths from 0.5 to 2 millimagnitudes and durations of up to 2 days for the largest dip. These dips are asymmetric in nature and are consistent with a model of an evaporating comet with an extended tail crossing the disc of the star Conclusions. We present the first broadband detections of exocomets crossing the disc of β Pictoris, complementing the predictions made 20 years earlier by Lecavelier Des Etangs et al. (1999, A&A, 343, 916). No periodic transits are seen in this time series. These observations confirm the spectroscopic detection of exocomets in calcium H and K lines that have been seen in high resolution spectroscopy.

Beta version