Published in

Cambridge University Press (CUP), Proceedings of the International Astronomical Union, S251(4), p. 173-174, 2008

DOI: 10.1017/s1743921308021509

Links

Tools

Export citation

Search in Google Scholar

HCO+ emission possibly related with a shielding mechanism that protects water molecules in the young PN K 3-35

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractWater maser emission has been detected only toward three planetary nebulae (PNe). In particular, in K3-35, the first PN where water vapor maser emission was detected, the components are located in a torus-like structure with a radius of 85 AU and also at the surprisingly large distance of 5000 AU from the star, in the tips of the bipolar lobes. The existence of these water molecules in PNe is puzzling, probably related to some unknown mechanism shielding them against the ionizing radiation. We report the detection of HCO+ (J = 1 − 0) emission toward K 3-35, that not only suggests that dense molecular gas (~105 cm−3) is present in this PN, but also that this kind of PN can enrich their surroundings with organic molecules.

Beta version