Published in

Astronomy & Astrophysics, (629), p. A97, 2019

DOI: 10.1051/0004-6361/201935921

Links

Tools

Export citation

Search in Google Scholar

Cosmograil

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We present new measurements of the time delays of WFI2033−4723. The data sets used in this work include 14 years of data taken at the 1.2 m Leonhard Euler Swiss telescope, 13 years of data from the SMARTS 1.3 m telescope at Las Campanas Observatory and a single year of high-cadence and high-precision monitoring at the MPIA 2.2 m telescope. The time delays measured from these different data sets, all taken in the R-band, are in good agreement with each other and with previous measurements from the literature. Combining all the time-delay estimates from our data sets results in ΔtAB = 36.2+0.7−0.8 days (2.1% precision), ΔtAC = −23.3+1.2−1.4 days (5.6%) and ΔtBC = −59.4+1.3−1.3 days (2.2%). In addition, the close image pair A1-A2 of the lensed quasars can be resolved in the MPIA 2.2 m data. We measure a time delay consistent with zero in this pair of images. We also explore the prior distributions of microlensing time-delay potentially affecting the cosmological time-delay measurements of WFI2033−4723. Our time-delay measurements are not precise enough to conclude that microlensing time delay is present or absent from the data. This work is part of a H0LiCOW series focusing on measuring the Hubble constant from WFI2033−4723.

Beta version