Published in

Cambridge University Press (CUP), Proceedings of the International Astronomical Union, S337(13), p. 213-216, 2017

DOI: 10.1017/s174392131700970x

Links

Tools

Export citation

Search in Google Scholar

Onset of superconductivity and retention of magnetic fields in cooling neutron stars

Journal article published in 2017 by Wynn C. G. Ho ORCID, Nils Andersson, Vanessa Graber
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractA superconductor of paired protons is thought to form in the core of neutron stars soon after their birth. Minimum energy conditions suggest that magnetic flux is expelled from the superconducting region due to the Meissner effect, such that the neutron star core retains or is largely devoid of magnetic fields for some nuclear equation of state and proton pairing models. We show via neutron star cooling simulations that the superconducting region expands faster than flux is expected to be expelled because cooling timescales are much shorter than timescales of magnetic field diffusion. Thus magnetic fields remain in the bulk of the neutron star core for at least 106 − 107yr. We estimate the size of flux free regions at 107yr to be ≲ 100m for a magnetic field of 1011G and possibly smaller for stronger field strengths.

Beta version