Published in

Astronomy & Astrophysics, (616), p. A131, 2018

DOI: 10.1051/0004-6361/201731943

Links

Tools

Export citation

Search in Google Scholar

MOLPOP-CEP: an exact, fast code for multi-level systems

Journal article published in 2018 by Andrés Asensio Ramos, Moshe Elitzur ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We present MOLPOP-CEP, a universal line transfer code that allows the exact calculation of multi-level line emission from a slab with variable physical conditions for any arbitrary atom or molecule for which atomic data exist. The code includes error control to achieve any desired level of accuracy, providing full confidence in its results. Publicly available, MOLPOP-CEP employs our recently developed coupled escape probability (CEP) technique, whose performance exceeds other exact methods by orders of magnitude. The program also offers the option of an approximate solution with different variants of the familiar escape probability method. As an illustration of the MOLPOP-CEP capabilities we present an exact calculation of the Spectral Line Energy Distribution (SLED) of the CO molecule and compare it with escape probability results. We find that the popular large-velocity gradient (LVG) approximation is unreliable at large CO column densities. Providing a solution of the multi-level line transfer problem at any prescribed level of accuracy, MOLPOP-CEP is removing any doubts about the validity of its final results.

Beta version