Published in

Astronomy & Astrophysics, (614), p. A122, 2018

DOI: 10.1051/0004-6361/201732362

Links

Tools

Export citation

Search in Google Scholar

The CARMENES search for exoplanets around M dwarfs

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Context. Previous simulations predicted the activity-induced radial-velocity (RV) variations of M dwarfs to range from ~1 cm s−1 to ~1 km s−1, depending on various stellar and activity parameters. Aims. We investigate the observed relations between RVs, stellar activity, and stellar parameters of M dwarfs by analyzing CARMENES high-resolution visual-channel spectra (0.5–1μm), which were taken within the CARMENES RV planet survey during its first 20 months of operation. Methods. During this time, 287 of the CARMENES-sample stars were observed at least five times. From each spectrum we derived a relative RV and a measure of chromospheric Hα emission. In addition, we estimated the chromatic index (CRX) of each spectrum, which is a measure of the RV wavelength dependence. Results. Despite having a median number of only 11 measurements per star, we show that the RV variations of the stars with RV scatter of >10 m s−1 and a projected rotation velocity v sin i > 2 km s−1 are caused mainly by activity. We name these stars “active RV-loud stars” and find their occurrence to increase with spectral type: from ~3% for early-type M dwarfs (M0.0–2.5 V) through ~30% for mid-type M dwarfs (M3.0–5.5 V) to >50% for late-type M dwarfs (M6.0–9.0 V). Their RV-scatter amplitude is found to be correlated mainly with v sin i. For about half of the stars, we also find a linear RV–CRX anticorrelation, which indicates that their activity-induced RV scatter is lower at longer wavelengths. For most of them we can exclude a linear correlation between RV and Hα emission. Conclusions. Our results are in agreement with simulated activity-induced RV variations in M dwarfs. The RV variations of most active RV-loud M dwarfs are likely to be caused by dark spots on their surfaces, which move in and out of view as the stars rotate.

Beta version