Published in

Oxford University Press (OUP), Monthly Notices of the Royal Astronomical Society, 2(490), p. 2679-2691, 2019

DOI: 10.1093/mnras/stz2733

Links

Tools

Export citation

Search in Google Scholar

Molecules in the Cep E-mm jet: evidence for shock-driven photochemistry?

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT The chemical composition of protostellar jets and its origin are still badly understood. More observational constraints are needed to make progress. With that objective, we have carried out a systematic search for molecular species in the jet of Cep E-mm, a template for intermediate-mass Class 0 protostars, associated with a luminous, high-velocity outflow. We made use of an unbiased spectral line survey in the range 72–350 GHz obtained with the IRAM 30-m telescope, complementary observations of the CO J = 3–2 transition with the JCMT, and observations at 1 arcsec angular resolution of the CO J = 2–1 transition with the IRAM Plateau de Bure Interferometer. In addition to CO, we have detected rotational transitions from SiO, SO, H2CO, CS, HCO+, and HCN. A strong chemical differentiation is observed in the southern and northern lobes of the jet. Radiative transfer analysis in the large velocity gradient approximation yields typical molecular abundances of the order of 10−8 for all molecular species other than CO. Overall, the jets exhibit an unusual chemical composition, as CS, SO, and H2CO are found to be the most abundant species, with a typical abundance of (3–4)× 10−8. The transverse size of the CO jet emission estimated from interferometric observations is about 1000 au, suggesting that we are detecting emission from a turbulent layer of gas entrained by the jet in its propagation and not the jet itself. We propose that some molecular species could be the signatures of the specific photochemistry driven by the UV radiation field generated in the turbulent envelope.

Beta version