Published in

Zenodo, 2016

DOI: 10.5281/zenodo.147956

Links

Tools

Export citation

Search in Google Scholar

Probing Stellar Dynamics With Space Photometry

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

The surface magnetic field has substantial influence on various stellar properties that can be probed through various techniques. With the advent of new space-borne facilities such as CoRoT and Kepler, uninterrupted long high-precision photometry is available for hundred of thousand of stars. This number will substantially grow through the forthcoming TESS and PLATO missions. The unique Kepler observations –covering up to 4 years with a 30-min cadence– allows studying stellar variability with different origins such as pulsations, convection, surface rotation, or magnetism at several time scales from hours to years. We study the photospheric magnetic activity of solar-like stars by means of the variability induced in the observed signal by starspots crossing the visible disk. We constructed a solar photometric magnetic activity proxy, Sph from SPM/VIRGO/SoHO, as if the Sun was a distant star and we compare it with several solar well-known magnetic proxies. The results validate this approach. Thus, we compute the Sph proxy for a set of CoRoT and Kepler solar-like stars for which pulsations were already detected. After characterizing the rotation and the magnetic properties of 300 solar-like stars, we use their seismic properties to characterize 18 solar analogs for which we study their magnetism. This allows us to put the Sun into context of its siblings.

Beta version