Published in

Oxford University Press (OUP), Monthly Notices of the Royal Astronomical Society, 1(493), p. 1388-1403, 2020

DOI: 10.1093/mnras/staa300

Links

Tools

Export citation

Search in Google Scholar

Asteroseismology of luminous red giants with Kepler I: long-period variables with radial and non-radial modes

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT While long-period variables (LPVs) have been extensively investigated, especially with MACHO and OGLE data for the Magellanic Clouds, there still exist open questions in their pulsations regarding the excitation mechanisms, radial order, and angular degree assignment. Here, we perform asteroseismic analyses on LPVs observed by the 4-year Kepler mission. Using a cross-correlation method, we detect unambiguous pulsation ridges associated with radial fundamental modes (n = 1) and overtones (n ≥ 2), where the radial order assignment is made using theoretical frequencies and observed frequencies. Our results confirm that the amplitude variability seen in semiregulars is consistent with oscillations being solar-like. We identify that the dipole modes, l = 1, are dominant in the radial orders of 3 ≤ n ≤ 6, and that quadrupole modes, l = 2, are dominant in the first overtone n = 2. A test of seismic scaling relations using Gaia DR2 parallaxes reveals the possibility that the relations break down when νmax ≲ 3 $μ {\rm Hz}$ (R ≳ 40 R⊙, or log $\rm L/L_{⊙ }$ ≳ 2.6). Our homogeneous measurements of pulsation amplitude and period for 3213 LPVs will be valuable for probing effects of pulsation on mass-loss, in particular in those stars with periods around 60 d, which has been argued as a threshold of substantial pulsation-triggered mass-loss.

Beta version