Published in

Oxford University Press (OUP), Monthly Notices of the Royal Astronomical Society, 4(493), p. 5181-5194, 2020

DOI: 10.1093/mnras/staa702

Links

Tools

Export citation

Search in Google Scholar

RAiSE X: searching for radio galaxies in X-ray surveys

Journal article published in 2020 by Ross J. Turner ORCID, Stanislav S. Shabala ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT We model the X-ray surface brightness distribution of emission associated with Fanaroff & Riley type-II radio galaxies. Our approach builds on the RAiSE dynamical model which describes broad-band radio frequency synchrotron evolution of jet-inflated lobes in a wide range of environments. The X-ray version of the model presented here includes: (1) inverse-Compton upscattering of cosmic microwave background radiation; (2) the dynamics of the shocked gas shell and associated bremsstrahlung radiation; and (3) emission from the surrounding ambient medium. We construct X-ray surface brightness maps for a mock catalogue of extended FR-IIs based on the technical characteristics of the eRosita telescope. The integrated X-ray luminosity function at low redshifts (z ≤ 1) is found to strongly correlate with the density of the ambient medium in all but the most energetic sources, whilst at high-redshift (z > 1) the majority of objects are dominated by inverse-Compton lobe emission due to the stronger cosmic microwave background radiation. By inspecting our mock spatial brightness distributions, we conclude that any extended X-ray detection can be attributed to AGN activity at redshifts z ≥ 1. We compare the expected detection rates of active and remnant high-redshift radio AGNs for eRosita and LOFAR, and future more sensitive surveys. We find that a factor of ten more remnants can be detected using X-ray wavelengths over radio frequencies at z > 2.2, increasing to a factor of 100 for redshifts z > 3.1.

Beta version