Published in

Oxford University Press (OUP), Monthly Notices of the Royal Astronomical Society, 2(489), p. 2439-2470, 2019

DOI: 10.1093/mnras/stz2301

Links

Tools

Export citation

Search in Google Scholar

The redshift evolution of X-ray and Sunyaev–Zel’dovich scaling relations in the fable simulations

Journal article published in 2019 by Nicholas A. Henden ORCID, Ewald Puchwein ORCID, Debora Sijacki
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract We study the redshift evolution of the X-ray and Sunyaev–Zel’dovich (SZ) scaling relations for galaxy groups and clusters in the fable suite of cosmological hydrodynamical simulations. Using an expanded sample of 27 high-resolution zoom-in simulations, together with a uniformly sampled cosmological volume to sample low-mass systems, we find very good agreement with the majority of observational constraints up to z ∼ 1. We predict significant deviations of all examined scaling relations from the simple self-similar expectations. While the slopes are approximately independent of redshift, the normalizations evolve positively with respect to self-similarity, even for commonly used mass proxies such as the YX parameter. These deviations are due to a combination of factors, including more effective active galactic nuclei feedback in lower mass haloes, larger binding energy of gas at a given halo mass at higher redshifts, and larger non-thermal pressure support from kinetic motions at higher redshifts. Our results have important implications for cluster cosmology from upcoming SZ surveys such as SPT-3G, ACTpol, and CMB-S4, as relatively small changes in the observable–mass scaling relations (within theoretical uncertainties) have a large impact on the predicted number of high-redshift clusters and hence on our ability to constrain cosmology using cluster abundances. In addition, we find that the intrinsic scatter of the relations, which agrees well with most observational constraints, increases at lower redshifts and for lower mass systems. This calls for a more complex parametrization than adopted in current observational studies to be able to accurately account for selection biases.

Beta version