Published in

Oxford University Press (OUP), Monthly Notices of the Royal Astronomical Society, 4(493), p. 5357-5368, 2020

DOI: 10.1093/mnras/staa551

Links

Tools

Export citation

Search in Google Scholar

Simulating the spatial distribution and kinematics of globular clusters within galaxy clusters in illustris

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT We study the assembly of globular clusters (GCs) in 9 galaxy clusters using the cosmological simulation Illustris. GCs are tagged to individual galaxies at their infall time. The tidal removal of GCs from their galaxies and the distribution of the GCs within the cluster is later followed self-consistently by the simulation. The method relies on the simple assumption of a single power-law relation between halo mass (Mvir) and mass in GCs (MGC) as found in observations. We find that the GCs specific frequency SN as a function of V-band magnitude naturally reproduces the observed ‘U’-shape due to the combination of the power law MGC–Mvir relation and the non-linear stellar mass (M*)–halo mass relation from the simulation. Additional scatter in the SN values is traced back to galaxies with early infall times due to the evolution of the M*–Mvir relation with redshift. GCs that have been tidally removed from their galaxies form the present-day intracluster component, from which about $∼ \!60{{\ \rm per\ cent}}$ were brought in by galaxies that currently orbit within the cluster potential. The remaining ‘orphan’ GCs are contributed by satellite galaxies with a wide range of stellar masses that are fully tidally disrupted at z = 0. This intracluster component is a good dynamical tracer of the dark matter potential. As a consequence of the accreted nature of most intracluster GCs, their orbits are fairly radial with a predicted orbital anisotropy β ≥ 0.5. However, local tangential motions may appear as a consequence of localized substructure, providing a possible interpretation to the β < 0 values suggested in observations of M87.

Beta version