Published in

Oxford University Press (OUP), Monthly Notices of the Royal Astronomical Society, 4(492), p. 5524-5539, 2020

DOI: 10.1093/mnras/staa134

Links

Tools

Export citation

Search in Google Scholar

Quasi-periodic behaviour in the optical and γ-ray light curves of blazars 3C 66A and B2 1633+38

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT We report on quasi-periodic variability found in two blazars included in the Steward Observatory Blazar Monitoring data sample: the BL Lac object 3C 66A and the Flat Spectrum Radio Quasar B2 1633+38. We collect optical photometric and polarimetric data in V and R bands of these sources from different observatories: St. Petersburg University, Crimean Astrophysical Observatory, WEBT–GASP, Catalina Real-Time Transient Survey, Steward Observatory, STELLA Robotic Observatory, and Katzman Automatic Imaging Telescope. In addition, an analysis of the γ-ray light curves from Fermi–LAT is included. Three methods are used to search for any periodic behaviour in the data: the Z-transform Discrete Correlation Function, the Lomb–Scargle periodogram and the Weighted Wavelet Z-transform. We find pieces of evidence of possible quasi-periodic variability in the optical photometric data of both sources with periods of ∼3 yr for 3C 66A and ∼1.9 yr for B2 1633+38, with significances between 3σ and 5σ. Only B2 1633+38 shows evidence of this behaviour in the optical polarized data set at a confidence level of 2σ–4σ. This is the first reported evidence of quasi-periodic behaviour in the optical light curve of B2 1633+38. Also, a hint of quasi-periodic behaviour is found in the γ-ray light curve of B2 1633+38 with a confidence level ≥2σ, while no periodicity is observed for 3C 66A in this energy range. We propose different jet emission models that could explain the quasi-periodic variability and the differences found between these two sources.

Beta version