Published in

Cambridge University Press (CUP), Proceedings of the International Astronomical Union, S262(5), p. 172-175, 2009

DOI: 10.1017/s1743921310002735

Links

Tools

Export citation

Search in Google Scholar

Stellar Populations and Kinematics in Spiral Galaxies

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractWe present a detailed study of the stellar populations (SPs) and kinematics of the bulge and inner disk regions of nearby spiral galaxies (Sa-Sd) based on deep long-slit Gemini/GMOS data. We find that the SPs of spiral galaxies are not well matched by single episodes of star formation; representative SPs must involve average SP values integrated over the star formation history (SFH) of the galaxy, such as those derived from the “full population synthesis” method used here. Our spiral bulges follow the same correlations of increasing light-weighted age and metallicity with central velocity dispersion as those of elliptical galaxies and early-type bulges found in other studies, but when SFHs more complex and realistic than a single burst are invoked, the trend with age is shallower and its scatter much reduced. In a mass-weighted context, all bulges are predominantly composed of old and metal-rich SPs. Bulge formation appears to be dominated by early processes that are common to all spheroids, whether they currently reside in disks or not. While monolithic collapse cannot be ruled out in some cases, merging must be invoked to explain the SP gradients in most bulges. Further bulge growth via secular processes, or “rejuvenated” star formation, generally contributes minimally to the stellar mass budget. We also demonstrate how the combination of our full population synthesis modeling of high-quality optical spectra of integrated SPs along with optical-NIR broad-band imaging can single out potential model weaknesses and help determine the reliability of the inferred SFHs.

Beta version