Published in

Cambridge University Press (CUP), Proceedings of the International Astronomical Union, S270(6), p. 227-230, 2010

DOI: 10.1017/s1743921311000421

Links

Tools

Export citation

Search in Google Scholar

Radiative, magnetic and numerical feedbacks on small-scale fragmentation

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractRadiative feedback and magnetic field are understood to have a strong impact on the protostellar collapse. We present high resolution numerical calculations of the collapse of a 1 M dense core in solid body rotation, including both radiative transfer and magnetic field. Using typical parameters for low-mass cores, we study thoroughly the effect of radiative transfer and magnetic field on the first core formation and fragmentation. We show that including the two aforementioned physical processes does not correspond to the simple picture of adding them separately. The interplay between the two is extremely strong, via the magnetic braking and the radiation from the accretion shock.

Beta version