Published in

Cambridge University Press (CUP), Laser and Particle Beams, 2(20), p. 255-261, 2002

DOI: 10.1017/s0263034602202153

Links

Tools

Export citation

Search in Google Scholar

Modeling of supersonic jet formation in conical wire array Z-pinches

Journal article published in 2002 by A. Ciardi ORCID, S. V. Lebedev, J. P. Chittenden, S. N. Bland
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Supersonic jet production in conical wire array Z-pinches is modeled using a two-dimensional (2D) resistive magneto-hydrodynamic (MHD) code. In conical wire arrays, the converging plasma ablated from the wires stagnates on axis, forming a standing conical shock which redirects and collimates the flow into a jet. As the jet exits the collimator shock, it is radiatively cooled and accelerated by the steep thermal gradients present. Purely hydrodynamic simulations using conditions relevant to the MAGPIE facility show good agreement with the experiments (Lebedev et al., 2002), indicating that narrow, high Mach number (M ∼ 20), radiatively cooled tungsten jets of astrophysical relevance can be obtained. To investigate the effects of lower radiative cooling on jet collimation, we modeled an aluminum conical wire array. When radiative losses are less significant, lower Mach number (M ∼ 10), less collimated jets are obtained. MHD simulations relevant to the “Z” facility were carried out to investigate the scaling of jet parameters. The resulting hypersonic (M ∼ 40), high density jets should allow the investigation of a wider range of astrophysical jet conditions.

Beta version