Published in

MDPI, Symmetry, 4(12), p. 527, 2020

DOI: 10.3390/sym12040527

Links

Tools

Export citation

Search in Google Scholar

High-Resolution Radio Observations of Five Optically Selected Type 2 Quasars

Journal article published in 2020 by Máté Krezinger ORCID, Sándor Frey ORCID, Zsolt Paragi ORCID, Roger Deane ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Many low-luminosity active galactic nuclei (AGNs) contain a compact radio core which can be observed with high angular resolution using very long baseline interferometry (VLBI). Combining arcsec-scale structural information with milliarcsec-resolution VLBI imaging is a useful way to characterise the objects and to find compact cores on parsec scales. VLBI imaging could also be employed to look for dual AGNs when the sources show kpc-scale double symmetric structure with flat or inverted radio spectra. We observed five such sources at redshifts 0.36 < z < 0.58 taken from an optically selected sample of Type 2 quasars with the European VLBI Network (EVN) at 1.7 and 5 GHz. Out of the five sources, only one (SDSS J1026–0042) shows a confidently detected compact VLBI core at both frequencies. The other four sources are marginally detected at 1.7 GHz only, indicating resolved-out radio structure and steep spectra. Using first-epoch data from the ongoing Karl G. Jansky Very Large Array Sky Survey, we confirm that indeed all four of these sources have steep radio spectra on arcsec scale, contrary to the inverted spectra reported earlier in the literature. However, the VLBI-detected source, SDSS J1026−0042, has a flat integrated spectrum. Radio AGNs that show kpc-scale symmetric structures with truly flat or inverted spectra could still be promising candidates of dual AGNs, to be targeted with VLBI observations in the future.

Beta version