Published in

Cambridge University Press (CUP), Proceedings of the International Astronomical Union, S314(10), p. 79-84, 2015

DOI: 10.1017/s1743921315006067

Links

Tools

Export citation

Search in Google Scholar

Stellar Evolution Models of Young Stars: Progress and Limitations

Journal article published in 2015 by Gregory A. Feiden ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractStellar evolution models are a cornerstone of young star astrophysics, which necessitates that they yield accurate and reliable predictions of stellar properties. Here, I review the current performance of stellar evolution models against young astrophysical benchmarks and highlight recent progress incorporating non-standard physics, such as magnetic field and starspots, to explain observed deficiencies. While addition of these physical processes leads to improved agreement between models and observations, there are several fundamental limitations in our understanding about how these physical processes operate. These limitations inhibit our ability to form a coherent picture of the essential physics needed to accurately compute young stellar models, but provide rich avenues for further exploration.

Beta version