Published in

Astronomy & Astrophysics, (622), p. A35, 2019

DOI: 10.1051/0004-6361/201833010

Links

Tools

Export citation

Search in Google Scholar

The progenitors of type-Ia supernovae in semidetached binaries with red giant donors

Journal article published in 2019 by D. Liu, B. Wang ORCID, H. Ge, X. Chen, Z. Han
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Context. The companions of the exploding carbon-oxygen white dwarfs (CO WDs) that produce type-Ia supernovae (SNe Ia) have still not been conclusively identified. A red-giant (RG) star can fill this role as the mass donor of the exploding WD − this channel for producing SNe Ia has been named the symbiotic channel. However, previous studies on this channel have given a relatively low rate of SNe Ia. Aims. We aim to systematically investigate the parameter space, Galactic rates, and delay time distributions of SNe Ia arising from the symbiotic channel under a revised mass-transfer prescription. Methods. We adopted an integrated mass-transfer prescription to calculate the mass-transfer process from a RG star onto the WD. In this prescription, the mass-transfer rate varies with the local material states. First, we obtain the parameter space that leads to SNe Ia by evolving a large number of semidetached WD+RG systems with the Eggleton stellar-evolution code. Second, we investigate the Galactic rates and delay-time distributions of SNe Ia using a binary population synthesis method. Results. The parameter space of WD+RG systems that can produce SNe Ia is enlarged significantly judging by our calculations. This channel could produce SNe Ia with intermediate and old ages, contributing up to 5% of all SNe Ia in the Galaxy. Our model increases the SN Ia rate from this channel by a factor of five. We suggest that the symbiotic systems RS Oph and T CrB are strong candidates for the progenitors of SNe Ia.

Beta version