Published in

Oxford University Press (OUP), Monthly Notices of the Royal Astronomical Society, 4(487), p. 5692-5710, 2019

DOI: 10.1093/mnras/stz1342

Links

Tools

Export citation

Search in Google Scholar

The effect of tides on the Sculptor dwarf spheroidal galaxy

Journal article published in 2019 by G. Iorio ORCID, C. Nipoti ORCID, G. Battaglia, A. Sollima ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractDwarf spheroidal galaxies (dSphs) appear to be some of the most dark matter (DM)-dominated objects in the Universe. Their dynamical masses are commonly derived using the kinematics of stars under the assumption of equilibrium. However, these objects are satellites of massive galaxies (e.g. the Milky Way) and thus can be influenced by their tidal fields. We investigate the implication of the assumption of equilibrium focusing on the Sculptor dSph by means of ad hoc N-body simulations tuned to reproduce the observed properties of Sculptor following the evolution along some observationally motivated orbits in the Milky Way gravitational field. For this purpose, we used state-of-the-art spectroscopic and photometric samples of Sculptor’s stars. We found that the stellar component of the simulated object is not directly influenced by the tidal field, while ${≈ } 30\!-\!60{{\ \rm per\ cent}}$ of the mass of the more diffuse DM halo is stripped. We conclude that, considering the most recent estimate of the Sculptor proper motion, the system is not affected by the tides and the stellar kinematics represents a robust tracer of the internal dynamics. In the simulations that match the observed properties of Sculptor, the present-day dark-to-luminous mass ratio is ≈6 within the stellar half-light radius (≈0.3 kpc) and >50 within the maximum radius of the analysed data set (≈1.5○, ≈2 kpc).

Beta version