Published in

Cambridge University Press (CUP), Proceedings of the International Astronomical Union, S256(4), p. 311-316, 2008

DOI: 10.1017/s1743921308028639

Links

Tools

Export citation

Search in Google Scholar

Star cluster evolution in the Magellanic Clouds revisited

Journal article published in 2008 by Richard de Grijs ORCID, Simon P. Goodwin
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractThe evolution of star clusters in the Magellanic Clouds has been the subject of significant recent controversy, particularly regarding the importance and length of the earliest, largely mass-independent disruption phase (referred to as “infant mortality”). Here, we take a fresh approach to the problem, using a large, independent, and homogeneous data set of UBVR imaging observations, from which we obtain the cluster age and mass distributions in both the Large and Small Magellanic Clouds (LMC, SMC) in a self-consistent manner. We conclude that the (optically selected) SMC star cluster population has undergone at most ~30% (1σ) infant mortality between the age range from about 3–10 Myr, to that of approximately 40–160 Myr. We rule out a 90% cluster mortality rate per decade of age (for the full age range up to 109 yr) at a > 6σ level. Using a simple approach, we derive a “characteristic” cluster disruption time-scale for the cluster population in the LMC that implies that we are observing the initial cluster mass function (CMF). Preliminary results suggest that the LMC cluster population may be affected by <10% infant mortality.

Beta version