Published in

Oxford University Press (OUP), Monthly Notices of the Royal Astronomical Society, 2(486), p. 2412-2421, 2019

DOI: 10.1093/mnras/stz970

Links

Tools

Export citation

Search in Google Scholar

Jet kinematics of the quasar 4C+21.35 from observations with the KaVA very long baseline interferometry array

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract We present the jet kinematics of the flat spectrum radio quasar (FSRQ) 4C+21.35 using time-resolved KaVA very long baseline interferometry array radio maps obtained from 2014 September to 2016 July. During two out of three observing campaigns, observations were performed bi-weekly at 22 and 43 GHz quasi-simultaneously. At 22 GHz, we identified three jet components near the core with apparent speeds up to (14.4 ± 2.1)c. The timing of the ejection of a new component detected in 2016 is consistent with a γ-ray flare in 2014 November. At 43 GHz, we found four inner jet (<3 mas) components with speeds from (3.5 ± 1.4)c to (6.8 ± 1.5)c. Jet component speeds tend to be higher with increasing distances from the core. We compared our data with archival Very Long Baseline Array (VLBA) data from the Boston University (BU) 43 GHz and the Monitoring Of Jets in Active galactic nuclei with VLBA Experiments (MOJAVE) 15.4 GHz monitoring programmes. Whereas MOJAVE data and our data are in good agreement, jet speeds obtained from the BU programme data in the same time period are about twice as high as the ones we obtain from the KaVA data. The discrepancy at 43 GHz indicates that radio arrays with different angular resolution identify and trace different jet features even when the data are obtained at the same frequency and at the same time. The flux densities of jet components decay exponentially, in agreement with a synchrotron cooling time-scale of ∼1 yr. Using known electron Lorentz factor values (∼9000), we estimate the magnetic field strength to be ∼1–3 $μ$T. When adopting a jet viewing angle of 5°, the intrinsic jet speed is of order 0.99c.

Beta version