Published in

Cambridge University Press (CUP), Proceedings of the International Astronomical Union, S301(9), p. 491-492, 2013

DOI: 10.1017/s1743921313015202

Links

Tools

Export citation

Search in Google Scholar

Extensive spectroscopic and photometric study of HD 25558, a long orbital-period binary with two SPB components

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractWe carried out an extensive photometric and spectroscopic investigation of the SPB binary, HD 25558 (see Fig. 1 for the time and geographic distribution of the observations). The ~2000 spectra obtained at 13 observatories during 5 observing seasons, the ground-based multi-colour light curves and the photometric data from the MOST satellite revealed that this object is a double-lined spectroscopic binary with a very long orbital period of about 9 years. We determined the physical parameters of the components, and have found that both lie within the SPB instability strip. Accordingly, both components show line-profile variations consistent with stellar pulsations. Altogether, 11 independent frequencies and one harmonic frequency were identified in the data. The observational data do not allow the inference of a reliable orbital solution, thus, disentangling cannot be performed on the spectra. Since the lines of the two components are never completely separated, the analysis is very complicated. Nevertheless, pixel-by-pixel variability analysis of the cross-correlated line profiles was successful, and we were able to attribute all the frequencies to the primary or secondary component. Spectroscopic and photometric mode-identification was also performed for several of these frequencies of both binary components. The spectroscopic mode-identification results suggest that the inclination and rotation of the two components are rather different. While the primary is a slow rotator with ~6 d rotation period, seen at ~60° inclination, the secondary rotates fast with ~1.2 d rotation period, and is seen at ~20° inclination. Our spectropolarimetric measurements revealed that the secondary component has a magnetic field with at least a few hundred Gauss strength, while no magnetic field was detected in the primary.The detailed analysis and results of this study will be published elsewhere.

Beta version