Published in

Annual Reviews, Annual Review of Astronomy and Astrophysics, 1(57), p. 35-78, 2019

DOI: 10.1146/annurev-astro-091918-104359

Links

Tools

Export citation

Search in Google Scholar

Angular Momentum Transport in Stellar Interiors

Journal article published in 2019 by Conny Aerts ORCID, Stéphane Mathis, Tamara M. Rogers
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Stars lose a significant amount of angular momentum between birth and death, implying that efficient processes transporting it from the core to the surface are active. Space asteroseismology delivered the interior rotation rates of more than a thousand low- and intermediate-mass stars, revealing the following: ▪ Single stars rotate nearly uniformly during the core-hydrogen and core-helium burning phases. ▪ Stellar cores spin up to a factor of 10 faster than the envelope during the red giant phase. ▪ The angular momentum of the helium-burning core of stars is in agreement with the angular momentum of white dwarfs. Observations reveal a strong decrease of core angular momentum when stars have a convective core. Current theory of angular momentum transport fails to explain this. We propose improving the theory with a data-driven approach, whereby angular momentum prescriptions derived frommultidimensional (magneto)hydrodynamical simulations and theoretical considerations are continuously tested against modern observations. The TESS and PLATO space missions have the potential to derive the interior rotation of large samples of stars, including high-mass and metal-poor stars in binaries and clusters. This will provide the powerful observational constraints needed to improve theory and simulations.

Beta version