Published in

Cambridge University Press (CUP), Proceedings of the International Astronomical Union, S284(7), p. 38-41, 2011

DOI: 10.1017/s174392131200868x

Links

Tools

Export citation

Search in Google Scholar

Beyond model fitting SEDs

Journal article published in 2011 by Ignacio Ferreras ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractExtracting star formation histories from spectra is a process plagued by numerous degeneracies among the parameters that contribute to the definition of the underlying stellar populations. Traditional approaches to overcome such degeneracies involve carefully defined line strength or spectral fitting procedures. However, all these methods rely on comparisons with population synthesis models. This paper illustrates alternative approaches based on the statistical properties of the information that can be extracted from uniformly selected samples of observed spectra, without any prior reference to modelling. Such methods are more useful with large datasets, such as surveys, where the information from thousands of spectra can be exploited to classify galaxies. An illustrative example is presented on the classification of early-type galaxies with optical spectra from the Sloan Digital Sky Survey.

Beta version