Published in

Oxford University Press (OUP), Monthly Notices of the Royal Astronomical Society, 1(489), p. 788-801, 2019

DOI: 10.1093/mnras/stz2151

Links

Tools

Export citation

Search in Google Scholar

On the extraction of the power-law parts of probability density functions in star-forming clouds

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT We present a new approach to extract the power-law part of a density/column-density probability density function (ρ-pdf/N-pdf) in star-forming clouds. This approach is based on the mathematical method bPlfit of Virkar & Clauset (2014, Annals of Applied Statistics, 8, 89) and it assesses the power-law part of an arbitrary distribution, without any assumptions about the other parts of this distribution. The slope and deviation point are derived as averaged values as the number of bins is varied. Neither parameter is sensitive to spikes and other local features of the tail. This adapted bPlfit method is applied to two different sets of data from numerical simulations of star-forming clouds at scales 0.5 and 500 pc, and it displays ρ-pdf and N-pdf evolution in agreement with a number of numerical and theoretical studies. Applied to Herschel data on the regions Aquila and Rosette, the method extracts pronounced power-law tails, consistent with those seen in simulations of evolved clouds.

Beta version