Published in

Oxford University Press (OUP), Monthly Notices of the Royal Astronomical Society, 2(490), p. 2458-2466, 2019

DOI: 10.1093/mnras/stz2795

Links

Tools

Export citation

Search in Google Scholar

NuSTAR view of Be/X-ray binary pulsar 2S 1417−624 during 2018 giant outburst

Journal article published in 2019 by Shivangi Gupta, Sachindra Naik ORCID, Gaurava K. Jaisawal ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT We report the results obtained from a detailed timing and spectral studies of Be/X-ray binary pulsar 2S 1417−624 using data from Swift and NuSTAR observatories. The observations were carried out at the peak of a giant outburst of the pulsar in 2018. X-ray pulsations at ∼17.475 s were detected in the source light curves up to 79 keV. The evolution of the pulse profiles with energy was found to be complex. A four-peaked profile at lower energies gradually evolved into a double-peak structure at higher energies. The pulsed fraction of the pulsar, calculated from the NuSTAR observation was found to follow an anticorrelation trend with luminosity as observed during previous giant X-ray outburst studies in 2009. The broad-band spectrum of the pulsar is well described by a composite model consisting of a cut-off power-law model modified with the interstellar absorption, a thermal blackbody component with a temperature of ≈1 keV, and a Gaussian function for the 6.4 keV iron emission line. Though the pulsar was observed at the peak of the giant outburst, there was no signature of presence of any cyclotron line feature in the spectrum. The radius of the blackbody emitting region was estimated to be ≈2 km, suggesting that the most probable site of its origin is the stellar surface of the neutron star. Physical models were also explored to understand the emission geometry of the pulsar and are discussed in the paper.

Beta version