Cambridge University Press (CUP), Proceedings of the International Astronomical Union, S259(4), p. 53-60, 2008
DOI: 10.1017/s1743921309030063
Full text: Unavailable
AbstractThis work reports high resolution SMA polarimetric observations toward NGC 2024 FIR 5, a magnetized core previously found to harbour protostars. Our 345 GHz data indicates the presence of an extended dust emission associated with the dense core where the protostars are embedded. The 3σ polarized intensity shows depolarization toward the peak of Stokes I emission. This diminishing polarized flux implies that the alignment efficiency of the core dust grains is low within higher column densities where grain properties are likely different. The derived magnetic field geometry exhibits pinched field lines which are typical in evolved supercritical clouds where the magnetic field no longer support the core from collapsing. As a consequence for protostars, the gravitational pulling along the disk's long axis makes an equatorial bend to the field lines that, in turn, results in a hourglass shape. The SMA field structure agrees perfectly with the BIMA map. However, models are still necessary to provide a complete description of the evolutionary scenario of FIR 5.