Published in

Oxford University Press (OUP), Monthly Notices of the Royal Astronomical Society, 1(493), p. 1261-1267, 2020

DOI: 10.1093/mnras/staa337

Links

Tools

Export citation

Search in Google Scholar

A Shapiro delay detection in the pulsar binary system PSR J1811–2405

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT This paper presents the first detection of Shapiro delay from the binary millisecond pulsar PSR J1811–2405. We report a 11σ measurement of the orthometric amplitude, h3 = 6.8(6) × 10−7, and a 16σ measurement of the orthometric ratio, ς = 0.81(5). Given the relatively high orbital inclination, i = 79(2)°, of this binary system, we obtain constraints on the companion mass of $m_{\rm {c}}=0.31^{+0.08 }_{ -0.06}\, \mathrm{M}_{⊙ }$. The pulsar mass is currently less well constrained, with a value of $2.0^{+0.8 }_{ -0.5}\, \mathrm{M}_{⊙ }$. The companion mass and the orbital period are in agreement with the prediction made by previous numerical calculations of the evolution of compact binary systems. From a study of the polarization, we find that the orbital inclination angle is ∼100° and that PSR J1811–2405 is an orthogonal rotator. In addition, the μs-level timing precision together with its narrow profile makes PSR J1811–2405 a good candidate for inclusion in the pulsar timing arrays being used to detect nHz gravitational waves.

Beta version