Published in

Astronomy & Astrophysics, (629), p. A59, 2019

DOI: 10.1051/0004-6361/201935982

Links

Tools

Export citation

Search in Google Scholar

Galaxy disc scaling relations: A tight linear galaxy–halo connection challenges abundance matching

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

In ΛCDM cosmology, to first order, galaxies form out of the cooling of baryons within the virial radius of their dark matter halo. The fractions of mass and angular momentum retained in the baryonic and stellar components of disc galaxies put strong constraints on our understanding of galaxy formation. In this work, we derive the fraction of angular momentum retained in the stellar component of spirals, fj, the global star formation efficiency fM, and the ratio of the asymptotic circular velocity (Vflat) to the virial velocity fV, and their scatter, by fitting simultaneously the observed stellar mass-velocity (Tully–Fisher), size–mass, and mass–angular momentum (Fall) relations. We compare the goodness of fit of three models: (i) where the logarithm of fj, fM, and fV vary linearly with the logarithm of the observable Vflat; (ii) where these values vary as a double power law; and (iii) where these values also vary as a double power law but with a prior imposed on fM such that it follows the expectations from widely used abundance matching models. We conclude that the scatter in these fractions is particularly small (∼0.07 dex) and that the linear model is by far statistically preferred to that with abundance matching priors. This indicates that the fundamental galaxy formation parameters are small-scatter single-slope monotonic functions of mass, instead of being complicated non-monotonic functions. This incidentally confirms that the most massive spiral galaxies should have turned nearly all the baryons associated with their haloes into stars. We call this the failed feedback problem.

Beta version