Published in

Cambridge University Press (CUP), Proceedings of the International Astronomical Union, S237(2), p. 160-164, 2006

DOI: 10.1017/s1743921307001391

Links

Tools

Export citation

Search in Google Scholar

Anatomy of the S255–S257 complex – triggered high-mass star formation

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractWe present a multi-wavelength (NIR to radio) and multi-scale (1 AU to 10 pc) study of the S255–S257 complex of young high-mass (proto)stars. The complex consists of two evolved HII regions and a molecular gas filament in which new generations of high mass stars form. Four distinct regions are identified within this dusty filament: a young NIR/optical source cluster, a massive protostar binary, a (sub)millimetre continuum and molecular clump in global collapse and a reservoir of cold gas. Interestingly, the massive binary protostellar system is detected through methanol maser and mid-IR emission at the interface between the NIR cluster and the cold gas filament. The collapsing clump is located to the north of the NIR cluster and hosts a young high-mass star associated with an outflow that is observed in mid-IR, methanol maser and radio emission. We interpret this anatomy as the possible result of triggered star formation, starting with the formation of two HII regions, followed by the compression of a molecular gas filament in which a first generation of high-mass stars forms (the NIR cluster), which then triggers the formation of high mass protostars in its near environment (the massive protostellar binary). The global collapse of the northern clump might be due to both the expansion of the HII regions that squashes the filament. In conclusion, we witness the formation of four generations of clusters of high-mass stars in S255–S257.

Beta version