Oxford University Press (OUP), Monthly Notices of the Royal Astronomical Society, 4(493), p. 5369-5381, 2020
Cambridge University Press (CUP), Proceedings of the International Astronomical Union, S346(14), p. 358-361, 2018
DOI: 10.1017/s1743921319001236
Full text: Unavailable
ABSTRACT We analyse the vertical distribution of high-mass X-ray binaries (HMXBs) in NGC 55, the nearest edge-on galaxy to the Milky Way (MW), based on X-ray observations by Chandra. Adopting a statistical approach, we estimate the difference between the scale height of the vertical distribution of HMXBs and the vertical distribution of star-forming activity between 0.33 and 0.57 kpc. The spatial offsets can be explained by a momentum kick the X-ray binaries receive during the formation of the compact object after a supernova explosion of the primary star. Determining the vertical distribution of HMXBs in the MW using Gaia DR2 astrometry, we find that the corresponding difference is considerably lower at 0.036 ± 0.003 kpc, attributed to the greater gravitational potential of the MW. We also calculate the centre-of-mass transverse velocities of HMXBs in NGC 55, using traveltime information from binary population synthesis codes and for different star formation histories (SFHs). For a flat SFH model (typical of spiral galaxies like NGC 55), we find that HMXBs are moving with a typical transverse velocity between 34 and 48 km s−1, consistent with space velocities of MW HMXBs. For an exponentially declining SFH model, HMXBs are moving at a velocity of 21 km s−1, consistent with the corresponding velocity of HMXBs in the Small Magellanic Cloud and Large Magellanic Cloud. Finally, we estimate the formation efficiency of HMXBs in NGC 55 at 299$_{-46}^{+50}$ (systems/M⊙ yr−1), consistent within the errors with the Magellanic Clouds but significantly higher than the MW, a difference that can be explained by the subsolar metallicity of NGC 55.