Published in

Cambridge University Press (CUP), Proceedings of the International Astronomical Union, S287(8), p. 156-160, 2012

DOI: 10.1017/s1743921312006837

Links

Tools

Export citation

Search in Google Scholar

Masers as evolutionary tracers of high-mass star formation

Journal article published in 2012 by Shari L. Breen, Simon P. Ellingsen ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractDetermining an evolutionary clock for high-mass star formation is an important step towards realising a unified theory of star formation, as it will enable qualitative studies of the associated high-mass stars to be executed. We have carried out detailed studies of a large number of sources suspected of undergoing high-mass star formation and have found that common maser transitions offer the best opportunity to determine an evolutionary scheme for these objects. We have investigated the relative evolutionary phases of massive star formation associated with the presence or absence of combinations of water, methanol and main-line hydroxyl masers. The locations of the different maser species have been compared with the positions of 1.2 mm dust clumps, radio continuum, GLIMPSE point sources and Extended Green Objects. Comparison between the characteristics of coincident sources has revealed strong evidence for an evolutionary sequence for the different maser species in high-mass star formation regions. We present our proposed sequence for the presence of the common maser species associated with young high-mass stars and highlight recent advances. We discuss future investigations that will be made in this area by comparing data from the Methanol Multibeam (MMB) Survey with chemical clocks from the Millimetre Astronomy Legacy Team 90 GHz (MALT90) Survey.

Beta version