Oxford University Press (OUP), Publications of Astronomical Society of Japan, 5(71), 2019
DOI: 10.1093/pasj/psz074
Full text: Unavailable
Abstract Star formation is thought to be driven by two groups of mechanisms; spontaneous collapse and triggered collapse. Triggered star formation mechanisms further diverge into cloud–cloud collision (CCC), “collect and collapse” (C&C) and shock-induced collapse of pre-existing, gravitationally stable cores, or “radiation driven implosion” (RDI). To evaluate the contributions of these mechanisms and establish whether these processes can occur together within the same star-forming region, we performed mapping observations of radio-frequency ammonia and water maser emission lines in the S235 massive star-forming region. Via spectral analyses of main, hyperfine, and multi-transitional ammonia lines we explored the distribution of temperature and column density in the dense gas in the S235 and S235AB star-forming region. The most remarkable result of the mapping observations is the discovery of high-density gas in inter-core bridges which physically link dense molecular cores that house young proto-stellar clusters. The presence of dense gas implies the potential for future star formation within the system of cores and gas bridges. Cluster formation implies collapse, and the continuous physical links, also seen in re-imaged archival CS and 13CO maps, suggest a common origin to the molecular cores housing these clusters, i.e a structure condensed from a single, larger parent cloud, brought about by the influence of a local expanding H$\,$ ii region. An ammonia absorption feature co-locating with the center of the extended H$\,$ ii region may be attributed to an older gas component left over from the period prior to formation of the H$\,$ ii region. Our observations also detail known and new sites of water maser emission, highlighting regions of active ongoing star formation.