Oxford University Press (OUP), Monthly Notices of the Royal Astronomical Society: Letters, 2019
Full text: Unavailable
Abstract The mass-concentration relation of dark matter halos reflects the assembly history of objects in hierarchical structure formation scenarios, and depends on fundamental quantities in cosmology such as the slope of the primordial matter power-spectrum. This relation is unconstrained by observations on sub-galactic scales. We derive the first measurement of the mass-concentration relation using the image positions and flux ratios from eleven quadruple-image strong gravitational lenses (quads) in the mass range 106 − 1010M⊙, assuming cold dark matter. We model both subhalos and line of sight halos, finite-size background sources, and marginalize over nuisance parameters describing the lens macromodel. We also marginalize over the the logarithmic slope and redshift evolution of the mass-concentration relation, using flat priors that encompass the range of theoretical uncertainty in the literature. At z = 0, we constrain the concentration of 108M⊙ halos $c=12_{-5}^{+6}$ at $68 \%$ CI, and $c=12_{-9}^{+15}$ at $95 \%$ CI. For a 107M⊙ halo, we obtain $68 \%$ ($95 \%$) constraints $c=15_{-8}^{+9}$ ($c=15_{-11}^{+18}$), while for 109M⊙ halos $c=10_{-4}^{+7}$ ($c=10_{-7}^{+14}$). These results are consistent with the theoretical predictions from mass-concentration relations in the literature, and establish strong lensing by galaxies as a powerful probe of halo concentrations on sub-galactic scales across cosmological distance.