Published in

Oxford University Press (OUP), Monthly Notices of the Royal Astronomical Society, 2019

DOI: 10.1093/mnras/stz3113

Links

Tools

Export citation

Search in Google Scholar

Mapping the Galactic disk with the LAMOST and Gaia Red clump sample. II. 3D asymmetrical kinematics of mono-age populations in the disk between 6−14 kpc

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract We perform analysis of the three-dimensional kinematics of Milky Way disk stars in mono-age populations. We focus on stars between Galactocentric distances of R = 6 and 14 kpc, selected from the combined LAMOST DR4 red clump giant stars and Gaia DR2 proper motion catalogue. We confirm the 3D asymmetrical motions of recent works and provide time tagging of the Galactic outer disk asymmetrical motions near the anticenter direction out to Galactocentric distances of 14 kpc. Radial Galactocentric motions reach values up to 10 km s−1, depending on the age of the population, and present a north-south asymmetry in the region corresponding to density and velocity substructures that were sensitive to the perturbations in the early 6 Gyr. After that time, the disk stars in this asymmetrical structure have become kinematically hotter, and are thus not sensitive to perturbations, and we find the structure is a relatively younger population. With quantitative analysis, we find stars both above and below the plane at R ≳ 9 kpc that exhibit bending mode motions of which the sensitive duration is around 8 Gyr. We speculate that the in-plane asymmetries might not be mainly caused by a fast rotating bar, intrinsically elliptical outer disk, secular expansion of the disk, or streams. Spiral arm dynamics, out-of-equilibrium models, minor mergers or others are important contributors. Vertical motions might be dominated by bending and breathing modes induced by complicated inner or external perturbers. It is likely that many of these mechanisms are coupled together.

Beta version