Published in

Cambridge University Press (CUP), Journal of Plasma Physics, 5(81), 2015

DOI: 10.1017/s0022377815000781

Links

Tools

Export citation

Search in Google Scholar

Magnetorotational instability in cool cores of galaxy clusters

Journal article published in 2015 by Carlo Nipoti, L. Posti, S. Ettori ORCID, M. Bianconi
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Clusters of galaxies are embedded in halos of optically thin, gravitationally stratified, weakly magnetized plasma at the system’s virial temperature. Owing to radiative cooling and anisotropic heat conduction, such intracluster medium (ICM) is subject to local instabilities, which are combinations of the thermal, magnetothermal and heat-flux-driven buoyancy instabilities. If the ICM rotates significantly, its stability properties are substantially modified and, in particular, also the magnetorotational instability (MRI) can play an important role. We study simple models of rotating cool-core clusters and we demonstrate that the MRI can be the dominant instability over significant portions of the clusters, with possible implications for the dynamics and evolution of the cool cores. Our results give further motivation for measuring the rotation of the ICM with future X-ray missions such as ASTRO-H and ATHENA.

Beta version