Cambridge University Press (CUP), Proceedings of the International Astronomical Union, S285(7), p. 199-206, 2011
DOI: 10.1017/s1743921312000609
Full text: Unavailable
AbstractModern X-ray observatories yield unique insight into the astrophysical time domain. Each X-ray photon can be assigned an arrival time, an energy and a sky position, yielding sensitive, energy-dependent light curves and enabling time-resolved spectra down to millisecond time-scales. Combining those with multiple views of the same patch of sky (e.g., in the Chandra and XMM-Newton deep fields) so as to extend variability studies over longer baselines, the spectral timing capacity of X-ray observatories then stretch over 10 orders of magnitude at spatial resolutions of arcseconds, and 13 orders of magnitude at spatial resolutions of a degree. A wealth of high-energy time-domain data already exists, and indicates variability on timescales ranging from microseconds to years in a wide variety of objects, including numerous classes of AGN, high-energy phenomena at the Galactic centre, Galactic and extra-Galactic X-ray binaries, supernovæ, gamma-ray bursts, stellar flares, tidal disruption flares, and as-yet unknown X-ray variables. This workshop explored the potential of strategic X-ray surveys to probe a broad range of astrophysical sources and phenomena. Here we present the highlights, with an emphasis on the science topics and mission designs that will drive future discovery in the X-ray time domain.