Published in

Cambridge University Press (CUP), Proceedings of the International Astronomical Union, S235(2), p. 333-333, 2006

DOI: 10.1017/s1743921306010052

Links

Tools

Export citation

Search in Google Scholar

Disentangling the AGN and Star-forming Contribution to the Sub-mJy Radio Counts

Journal article published in 2006 by Nick Seymour ORCID, D. Moss, T. Dwelly, I. McHardy, M. Page, N. Loaring
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractThe true nature of the faint radio population remains elusive despite the many observations of the “sub-mJy” bump over the last two decades. This lack of information is largely due to the faint magnitudes of the optical counterparts to the radio sources. There are strong theoretical reasons (and a few observational ones) to believe that this rise in the counts is due to the emergence of a rapidly evolving star-forming population. Now, for the first time, we are able to separate the AGN and star-forming populations below 1mJy using a combination of multi-wavelength data from Spitzer, GMRT, MERLIN, CFHT, Keck, UKIRT, Subaru, Chandra and XMM-Newton. The many discriminators between these emission mechanisms include MIR colours, MIR/radio flux ratios, X-ray luminosities/spectra, optical spectra, radio morphologies and radio spectra. We can now derive the source counts separately for AGN and star-forming galaxies confirming that the latter population rise sharply at faint flux densities.

Beta version