Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 43(112), p. E5815-E5824, 2015

DOI: 10.1073/pnas.1509627112

Links

Tools

Export citation

Search in Google Scholar

CD31 signals confer immune privilege to the vascular endothelium

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Constitutive resistance to cell death induced by inflammatory stimuli activating the extrinsic pathway of apoptosis is a key feature of vascular endothelial cells (ECs). Although this property is central to the maintenance of the endothelial barrier during inflammation, the molecular mechanisms of EC protection from cell-extrinsic, proapoptotic stimuli have not been investigated. We show that the Ig-family member CD31, which is expressed by endothelial but not epithelial cells, is necessary to prevent EC death induced by TNF-α and cytotoxic T lymphocytes in vitro. Combined quantitative RT-PCR array and biochemical analysis show that, upon the engagement of the TNF receptor with TNF-α on ECs, CD31 becomes activated and, in turn, counteracts the proapoptotic transcriptional program induced by TNF-α via activation of the Erk/Akt pathway. Specifically, Akt activation by CD31 signals prevents the localization of the forkhead transcription factor FoxO3 to the nucleus, thus inhibiting transcription of the proapoptotic genes CD95/Fas and caspase 7 and de-repressing the expression of the antiapoptotic gene cFlar. Both CD31 intracellular immunoreceptor tyrosine-based inhibition motifs are required for its prosurvival function. In vivo, CD31 gene transfer is sufficient to recapitulate the cytoprotective mechanisms in CD31 pancreatic β cells, which become resistant to immune-mediated rejection when grafted in fully allogeneic recipients.

Beta version