Published in

Cambridge University Press (CUP), Proceedings of the International Astronomical Union, S284(7), p. 205-209, 2011

DOI: 10.1017/s1743921312009064

Links

Tools

Export citation

Search in Google Scholar

A new model for the infrared emission of IRAS F10214+4724

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractWe present a new model for the infrared emission of the high redshift hyperluminous infrared galaxy IRAS F10214+4724 which takes into account recent photometric data from Spitzer and Herschel that sample the peak of its spectral energy distribution. We first demonstrate that the combination of the AGN tapered disc and starburst models of Efstathiou and coworkers, while able to give an excellent fit to the average spectrum of type 2 AGN measured by Spitzer, fails to match the spectral energy distribution of IRAS F10214+4724. This is mainly due to the fact that the ν Sν distribution of the galaxy falls very steeply with increasing frequency (a characteristic of heavy absorption by dust) but shows a silicate feature in emission. We propose a model that assumes two components of emission: clouds that are associated with the narrow-line region and a highly obscured starburst. The emission from the clouds must suffer significantly stronger gravitational lensing compared to the emission from the torus to explain the observed spectral energy distribution.

Beta version