Published in

Oxford University Press (OUP), Monthly Notices of the Royal Astronomical Society, 2(489), p. 1742-1752, 2019

DOI: 10.1093/mnras/stz2221

Links

Tools

Export citation

Search in Google Scholar

Spatial variations in the Milky Way disc metallicity–age relation

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT Stellar ages are a crucial component to studying the evolution of the Milky Way. Using Gaia DR2 distance estimates, it is now possible to estimate stellar ages for a larger volume of evolved stars through isochrone matching. This work presents [M/H]–age and [α/M]–age relations derived for different spatial locations in the Milky Way disc. These relations are derived by hierarchically modelling the star formation history of stars within a given chemical abundance bin. For the first time, we directly observe that significant variation is apparent in the [M/H]–age relation as a function of both Galactocentric radius and distance from the disc mid-plane. The [M/H]–age relations support claims that radial migration has a significant effect in the plane of the disc. Using the [M/H] bin with the youngest mean age at each radial zone in the plane of the disc, the present-day metallicity gradient is measured to be −0.059 ± 0.010 dex kpc−1, in agreement with Cepheids and young field stars. We find a vertically flared distribution of young stars in the outer disc, confirming predictions of models and previous observations. The mean age of the [M/H]–[α/M] distribution of the solar neighbourhood suggests that the high-[M/H] stars are not an evolutionary extension of the low-α sequence. Our observational results are important constraints to Galactic simulations and models of chemical evolution.

Beta version